Artificial Intelligence-assisted Detection Tool for Pancreatic Cancer - PANCREASaver
Summary | PANCREASaver contains a “Pancreas Cancer (PC) automatic segmentation model” (image segmentation) and a “Pancreas Cancer (PC) analysis AI model” (image classification) that can read the DICOM format of postcontrast CT images directly for the automatic analysis process. After conducting prep-processing with image processing algorithms, C2FNAS is employed to illustrate the tumor position prior to the diagnosis conducted by CNN. The results can be provided to the physician for diagnostic reference so as to reduce early omissions and increase the detection rate of pancreatic cancer. The overall five-year survival rate of pancreatic cancer is less than 10%, which turns it the most lethal cancer. However, if the tumor is detected and treated sooner when it is smaller than 2 cm, the five-year survival rate can be increased to 80%. PANCREASaver is the world’s first computer-assisted detection system that uses CNN models to detect pancreatic cancer on CT images and assists physicians when interpreting. It increases the tumor detection rate of pancreatic cancer on CT images and fulfills the urgent clinical needs of diagnosing pancreatic cancer that is often ignored on CT images. PANCREASaver is the world's first AI pancreatic cancer (PC) detection model that can detect 92.1% of tumors <2 cm on CTs and assists physicians in interpretation to improve patient survival. The usage of abdominal CT scans is up to 920,000 per year in Taiwan, thus, a combination of PANCREASaver and CT scan is a possible new diagnostic tool that can create innovative medical services and business opportunities for medical institutions and physical examination centers. Besides, health insurance-related units can also benefit from saving the high medical expenses of advanced PC patients. |
||
---|---|---|---|
Technical Film | |||
Keyword | Medical engineering and medical equipment Intelligent Information System#Interdisciplinary integration | ||
Research Project | |||
Research Team |
More like this
Provide the latest information of AI research centers and applied industries
-
Integration of an ICU Visualization Dashboard (i-Dashboard) as a Platform to Facilitate Multidisciplinary Rounds
Multidisciplinary rounds (MDRs) are scheduled, patient-focused communication mechanisms among multidisciplinary providers in the intensive care unit (ICU). The surgical ICU team of National Cheng Kung University Hospital has developed and integrated i-Dashboard as a platform to facilitate MDRs. i-Dashboard is a custom-developed visualization dashboard that supports (1) key information retrieval and reorganization, (2) time-series data, and (3) display on large touchscreens during MDRs. The i-Dashboard increases the efficiency in data gathering and enhances communication accuracy and information exchange in MDRs.
-
Machine Learning to Predict In-Hospital Cardiac Arrest in Patients Admitted from the Emergency Department with COVID-19 and Suspected Pneumonia
By using the machine learning algorithms, this study developed a risk stratification model for predicting the occurrence of in-hospital cardiac arrest (IHCA) events in patients admitted from the emergency department with COVID-19 and pneumonia. The results showed that the model's performance is better than by using the National Early Warning Score (NEWS).
-
Cardiovascular Health Guardian – Novel Pulse Wave Velocity and Personal Blood Pressure Estimation System for Smart Watch
Our team develops an accurate PWV estimation algorithm that uses wrist PPG and ECG signals from wearable devices. A missing-feature imputation and ambiguous-feature resolution technique is developed and the availability of wrist PPG morphological features is raised from 60% to 99.1%. A weighted pulse decomposition approach is adopted and 5 component waves can be acquired to examine more detailed properties. The PWV is then estimated by XGBoost algorithm with the hierarchical regression model.
-
HeaortaNet (Automatic Pericardium/Aorta Segmentation AI Model [HeaortaNet])
The Pericardium/Aorta Segmentation and Cardiovascular Risk Prediction AI Total Solution Model, HeaortaNet, is a deep learning model based on UNet and attention gate, and had been trained by >70,000 axial images with verified annotations of the pericardium and aorta. It shortens the time for data processing from 60 minutes, by manual segmentation of both pericardium and aorta, to 0.4 seconds. The segmentation accuracy is 94.8% for the pericardium, and 91.6% for the aorta. The applicability of HeaortaNet had been demonstrated by analyzing the non-contrast chest CT scans (>5,000 cases) deposited in the mega-image bank of National Health Insurance Databank.
-
iSleepBetter Corporation
Intelligent Portable Neurofeedback Training System: Highlights of our product: 1. High accurate EEG value (with rigorous hardware and software design and verification) 2. real-time feedback by computer screen or APP 3. can be used at home (easy to ware, easy to use)
-
DeepFIND
Artificial Intelligence Automatic Sputum Microscopy System AIASMS: AIASMS can automatically shoot images from sputum smear samples and identify Mycobacterium tuberculosis(MTB). AIASMS can find the most suitable depth for shooting images and then automatically shoot images under the microscope through auto-focusing. These images will be stored in the cloud database. Meanwhile, AIASMS detect whether the sputum smear contains MTB. AIASMS can accurately label the location of the TB. The sensitivity and specificity can reach 90% and 99% respectively. We also cooperate with three hospitals in the northern, central, and southern regions of Taiwan to conduct blind testing, and the sensitivity can be more than 90%. AIASMS can also distinguish between MTB and Non-tuberculous mycobacteria (NTM). Finally, n the expansion of technology, we have extended the identification of the acid-resistant staining to the identification of gram staining, so that our system can widely identify a variety of bacteria.
-
ALOVAS
ALOVAS Platform: ALOVAS acts as an A.I. Pathology Platform which provides high resolution pathology image viewer. Even Giga-pixel-level original images can be viewed online in real time. ALOVAS platform can be used not only on computer, but also on iPad. Users can upload images on the platform and select AI models for automated detection, and browse the detection results on the platform. ALOVAS also provides commonly used annotation tools, including hand-drawing, dots, rectangles, etc., which can be used to mark areas of interest. Embedded with the ALOVAS platform also provided several detection algorithms. We hope ALOVAS can assist physicians in rapid diagnosis, in related pathological research, and reduce the workload of pathologists in the future.
-
alpha pulse
ECG STEMI AI Model: In the past, most AI systems gave people the feeling of a black box and couldn't be trusted. The team designed a mechanism that allows doctors to adjust and observe the AI model, so that the AI model can be customized to the functions the doctor wants. We use LINE, the most commonly used communication software for doctors, to design an EKG Line Bot. Medical staff can upload an electrocardiogram to the EKG Line Bot to instantly identify whether the electrocardiogram is Stemi, so as to help doctors determine whether the patient has signs of myocardial infarction. We use this Line Bot to cooperate with doctors and ask them to communicate with the Line Bot. According to the heat map provided by the system, we can check whether it is consistent with the medical concept, and then help us correct the accuracy of our model. The system will train the correct data again.
-
NTU CSIE Medical Informatics Lab
NTU Medical Genie Precision Health Platform: The product is mainly composed of wearable devices, IoT environmental sensors, deep learning, personal health app and case management platform. It can collect and monitor user's lifestyle and environment automatically, and predict the possibility of emergency to assist medical staff in making decisions. In addition, we opened source the project to solve most clinical studies that require lots of time to build data collection tools and processes.
-
Digital Medicine Center of National Yang Ming Chiao Tung University
AI-based Brain Assessment System: Mental illness is a critical health issue in Taiwan. Psychiatric diagnosis is largely based on self-reported or symptomatic criteria without objective findings. This state-of-the-art psychiatric diagnostic platform using standardized brain imaging data, however, improves the efficiency and accuracy of psychiatric diagnosis. Our platform can easily identify the deficiency in brain regions associated with schizophrenia, provides a novel way to evaluate mental illness and its progression, with powerful visualization. This web-based diagnostic platform has international multicenter validation, scientific publication, patent-pending as well as awarded by the 17th National Innovation Award in 2020, etc. This evidence-based, AI-assisted psychiatric diagnosis platform, validated with large-scale standardized brain imaging. We believe this state-of-the-art diagnostic tool can be a new light on modern psychiatric medicine, and promote mental health in the general population.