O'Intelligent Inc.
Summary | AI-enabled Service Assurance Platform for 5G Vertical Application: The platform can help customers quickly import 5G vertical applications by providing overall customized solutions, including equipment evaluation, network deployment, application importing, network maintenance, and operation optimization. The platform can bridge the gap between the telecom industries and the vertical application industries and provide a total solution for the industries to import 5G vertical applications. O'Intelligent hybrid 5G/Wi-Fi private network management system: O'Intelligent system is hybrid 5G/Wi-Fi private network management system and services based on the O-RAN architecture. It provides network management, AI data analysis, and application import for smart factories, healthcare, and smart medical fields, and achieves 3GPP high-security services design. This system includes professional modules such as "hybrid 5G/Wi-Fi private network management", "real-time/non-real-time 5G security testing services and verification", and "5G AI data analysis". Company Description: O'Intelligent Inc. is a solutions provider of hybrid 5G/Wi-Fi private network management service. It focuses on the integration of 5G/Wi-Fi wireless network environments with management systems, and cooperates with O'Prueba to introduce 3GPP SCAS security solutions to create high-security network management, AI data analysis, smart factory/healthcare/medical senarios and related applications. |
||
---|---|---|---|
Technical Film |
|
||
Keyword | AI-enabled Service Assurance Platform for 5G Vertical Application O'Intelligent hybrid 5G/Wi-Fi private network management system |
More like this
Provide the latest information of AI research centers and applied industries
-
AAAI Technologies, Inc.
AI Deep Compression Toolchain: To enhance the computing power and lower the power consumption of edge devices, this toolchain delivers a 120x AI model compression ratio from original floating-point inference models, compress into fixed-point and bit-accurate edge models with a smaller than 1% accuracy loss. We also provide an open-source image bank and fully automatic labeling tool, available for free application and use at https://www.aicreda.com/.
-
Autonomous UAV Inspection System
With our autonomous UAV systems, we can effectively reduce many high-risk and high-cost inspections which require high manpower, such as inspections of dams, river, coastline patrols, etc.. Operators only need to setup and launch the system to allow the UAV to complete the designated tasks independently.
-
Development of TheorySystems of Robot Learning from Human Demonstration (LfD)-Development of Learning from Human Demonstration Robot
This project proposes a learning from demonstration (LfD) system that allows robots to be not only taught by human via demonstration but also adjusted by themselves.
-
Out of the Lab, a Scientist Dig out the Merit of AI.
Quote:br / “It is worth giving up some things because of dream pursuing” Professor SHOU-DE, LIN at the department of computer scienceInformation Engineering in National Taiwan University, Chief Machine Learning Scientist in Appier, said “An escape from comfort zone to seek new challenges makes my life become more colorful.”br / br / Content:br / br / Given qualified for being as the freshman of National Taiwan University College of Medicine, Professor Lin chose the department of electrical engineering in NTU as the first priority in Joint College Entrance Examination (JCEE). Though the undergraduate education did not cultivate him the passion on the field of electrical engineering, Professor Lin said, however, he was still recommended for further study at the graduate institute of electronics engineering in NTU due to his talentsoutstanding academic performance.
-
5G C-V2I Enabled Intelligent Real-time Trajectory PredictionWarning System
This study proposes a 5G C-V2I (Cellular Vehicle-to-Infrastructure) enabled intelligent trajectory predictionwarning system, which can be implemented in a framework including RSUs (Road Side Units) with radar detection ability5G edge computing servers. This study exploits artificial intelligence to predict instant trajectories of vehicles at crossroads. The resulting augmented-awareness navigation information is then broadcasted to road users through 5G C-V2I with low latency. In practical applications, road users can obtain real-time dynamics of surrounding vehicles so that their level of safety can be effectively enhanced.
-
Advanced Technologies for Designing Trustable AI Services
This integrated research project follows the Taiwan's 2030 Science & Technology Vision and takes LOHAS community and inclusive technology as the major research direction. We aim to develop trustable AI technologies, and introduce them to future smart services. That will realize the development of human-centric smart technology, and strengthen the governance and application of emerging technologies. The integrated project consists of 7 sub-projects led by PIs from National Taiwan University, National Tsing-Hua Universiy and Academia Sinica and composed of top AI technological teams. These sub-projects are divided into 3 clusters, including machine learning (sub-projects 1 and 2), computer vision (sub-projects 3 and 4), and human-centric computing (sub-projects 5, 6 and 7). We will deal with the issues of bias, fairness, transparency, explainability, traceability, and so on, from the aspects of data collection, technology, and application landing. Each sub-project will implement specific smart services to reflect the benefits and practical applications of the developed technologies. The NTU Joint Research Center for AI Technology and All Vista Healthcare, an AI Innovation Research Center supported by MOST, is responsible for management, planning, and execution of the integrated research project. We will propose a plan that can be generalized and applied to the intelligent service industry.
-
iSleepBetter Corporation
Intelligent Portable Neurofeedback Training System: Highlights of our product: 1. High accurate EEG value (with rigorous hardware and software design and verification) 2. real-time feedback by computer screen or APP 3. can be used at home (easy to ware, easy to use)
-
DeepFIND
Artificial Intelligence Automatic Sputum Microscopy System AIASMS: AIASMS can automatically shoot images from sputum smear samples and identify Mycobacterium tuberculosis(MTB). AIASMS can find the most suitable depth for shooting images and then automatically shoot images under the microscope through auto-focusing. These images will be stored in the cloud database. Meanwhile, AIASMS detect whether the sputum smear contains MTB. AIASMS can accurately label the location of the TB. The sensitivity and specificity can reach 90% and 99% respectively. We also cooperate with three hospitals in the northern, central, and southern regions of Taiwan to conduct blind testing, and the sensitivity can be more than 90%. AIASMS can also distinguish between MTB and Non-tuberculous mycobacteria (NTM). Finally, n the expansion of technology, we have extended the identification of the acid-resistant staining to the identification of gram staining, so that our system can widely identify a variety of bacteria.
-
ALOVAS
ALOVAS Platform: ALOVAS acts as an A.I. Pathology Platform which provides high resolution pathology image viewer. Even Giga-pixel-level original images can be viewed online in real time. ALOVAS platform can be used not only on computer, but also on iPad. Users can upload images on the platform and select AI models for automated detection, and browse the detection results on the platform. ALOVAS also provides commonly used annotation tools, including hand-drawing, dots, rectangles, etc., which can be used to mark areas of interest. Embedded with the ALOVAS platform also provided several detection algorithms. We hope ALOVAS can assist physicians in rapid diagnosis, in related pathological research, and reduce the workload of pathologists in the future.
-
alpha pulse
ECG STEMI AI Model: In the past, most AI systems gave people the feeling of a black box and couldn't be trusted. The team designed a mechanism that allows doctors to adjust and observe the AI model, so that the AI model can be customized to the functions the doctor wants. We use LINE, the most commonly used communication software for doctors, to design an EKG Line Bot. Medical staff can upload an electrocardiogram to the EKG Line Bot to instantly identify whether the electrocardiogram is Stemi, so as to help doctors determine whether the patient has signs of myocardial infarction. We use this Line Bot to cooperate with doctors and ask them to communicate with the Line Bot. According to the heat map provided by the system, we can check whether it is consistent with the medical concept, and then help us correct the accuracy of our model. The system will train the correct data again.