• View:
  • Items
類神經電路驗證 Search Result 67
    • New insight into the brain: Optical imaging/stimulationspiking neural circuit models

      New insight into the brain: Optical imaging/stimulationspiking neural circuit models

      div style="text-align: justify"Constructing a functional connectomeits computational model is a crucial step toward understanding the mechanisms of brain functions. To achieve this goal, we developed two correlated technologies: (1) An all- optical physiology (AOP) that is capable of millisecond volumetric imagingaccurate stimulation in living animal brains. This system allows us to establish functional connectomeneural coding with a single-cell resolution. (2) A cellular-level spiking neural circuit simulation system that is capable of tuning itself based on the input data from the AOP system. We have demonstrated our technologies in the Drosophila late visual systemwill apply them in the brains of larger species such as mice. We expect that our technologies will be able to greatly enhance our knowledge of the brain operation principles. Our 3D all-optical physiology (AOP) platform incorporates single-photon point stimulationtwo-photon high-speed volumetric recordings (Optics Letters 2019, "Editors pick"). We have demonstrated its effectiveness in studying the anterior visual pathway of fruit flies (iScience2019). In comparison, contemporary high-speed AOP platforms are limited to single-depthdiscrete multi-plane recordings that are not suitable for studying functional connections. Our high-resolution computational model is constructed based on the combination of static connectomeAOP data,is much more realistic than the existing models. Our work aids establishing in-vivo 3D functional connectomescomputational models of the brains, thus provides insight into the mechanisms of brain functions./div
    • Darsen Lu《New Era for AI Chips》

      Darsen Lu《New Era for AI Chips》

      With the rapid advancement of artificial intelligence and IoT, many solutions have been successfully implemented. However, for very large biomedical image computations, such as MRI’s, the deep learning/ training will be a lot more time consuming. At the moment, GPU’s are considered the baby of the AI world, Google has also developed a TPU to expedite AI procedures. Both GPU and TPU make the process swift. Prof. Darsen Lu’s Research Team has built an open simulation platform called (simNemo) to enable design exploration by academic and industry users in Taiwan on both the AI platform and AI application fronts.
    • Darsen Lu《New Era for AI Chips》

      Darsen Lu《New Era for AI Chips》

      With the rapid advancement of artificial intelligence and IoT, many solutions have been successfully implemented. However, for very large biomedical image computations, such as MRI’s, the deep learning/ training will be a lot more time consuming. At the moment, GPU’s are considered the baby of the AI world, Google has also developed a TPU to expedite AI procedures. Both GPU and TPU make the process swift. Prof. Darsen Lu’s Research Team has built an open simulation platform called (simNemo) to enable design exploration by academic and industry users in Taiwan on both the AI platform and AI application fronts.
    • Electronic Circuit Breaker

      Electronic Circuit Breaker

      1. The modular design of a electric breaker is proposed. A prototype of a solid-state circuit with an input voltage of 500 V and adjustable rated current including 50 A, 100 A, 150 A and 200 A. 2. Achieved zero-current cutoff within 110 µs using the characteristics of IGBTs to detect the current value. 3. A12 bits analog/digital converter is used to achieve a higher accuracy current detection effect when compared with the conventional analog circuit. It can also detect the fault current rising rate and correspond to different protection delay times according to the different fault current rising rate, so that the components in the solid-state breaker can withstand a lower fault current.
    • NTU CSIE Medical Informatics Lab

      NTU CSIE Medical Informatics Lab

      NTU Medical Genie Precision Health Platform: The product is mainly composed of wearable devices, IoT environmental sensors, deep learning, personal health app and case management platform. It can collect and monitor user's lifestyle and environment automatically, and predict the possibility of emergency to assist medical staff in making decisions. In addition, we opened source the project to solve most clinical studies that require lots of time to build data collection tools and processes.
    • Computer Vision Research Center, National Yang-Ming Chiao-Tung university

      Computer Vision Research Center, National Yang-Ming Chiao-Tung university

      Development of AI Platform for Smart Drone - Intelligent Flight: Due to its high mobility and the ability to fly in the sky, the drone has inspired more and more innovative applications/services in recent years. The goal of this project is to resolve the problem of blindly flying an unmanned aerial vehicle (UAV, which a drone in our case) when it is out of human sight or the range of wireless communication, and three major research and development directions will be considered in this project. Three artificial intelligence (AI) technologies, namely, smart sensing, smart control, and smart simulation, are applied in this project. Smart sensing - a flight system is developed, which can avoid the obstacles, complete a flight mission, and land safely. Smart control - an intelligence flight control system and a light-weighted somatosensory vest are developed. Smart simulation - a cost-effective training system and a 3D model simplification method are designed.
    • Ultrahigh Energy Density Lithium-ion Batteries based on Sustainable Electrodes

      Ultrahigh Energy Density Lithium-ion Batteries based on Sustainable Electrodes

      A small organic molecule with multiple redox-active sites shows promise in the development of next-generation electric energy storage systems, especially for electric cars, green energy, and large-scale energy storage, when used as an active materials in a cathode in lithium-ion batteries (LIBs). Herein, an organic LIB with cathode material based on hexaazatriphenylene embedded quinone exhibits high capacity, high rate capability, and high cycling stability, which are far superior to that of commercial LIBs.
本網站使用您的Cookie於優化網站及您的購物經驗。繼續瀏覽網站即表示您同意本公司隱私權政策,您可至隱私權政策了解詳細資訊。