Artificial Intelligence Automatic Sputum Microscopy System AIASMS Search Result 11
-
-
DeepFIND
Artificial Intelligence Automatic Sputum Microscopy System AIASMS: AIASMS can automatically shoot images from sputum smear samples and identify Mycobacterium tuberculosis(MTB). AIASMS can find the most suitable depth for shooting images and then automatically shoot images under the microscope through auto-focusing. These images will be stored in the cloud database. Meanwhile, AIASMS detect whether the sputum smear contains MTB. AIASMS can accurately label the location of the TB. The sensitivity and specificity can reach 90% and 99% respectively. We also cooperate with three hospitals in the northern, central, and southern regions of Taiwan to conduct blind testing, and the sensitivity can be more than 90%. AIASMS can also distinguish between MTB and Non-tuberculous mycobacteria (NTM). Finally, n the expansion of technology, we have extended the identification of the acid-resistant staining to the identification of gram staining, so that our system can widely identify a variety of bacteria.
-
-
-
Computer Vision Research Center, National Yang-Ming Chiao-Tung university
Development of AI Platform for Smart Drone - Intelligent Flight: Due to its high mobility and the ability to fly in the sky, the drone has inspired more and more innovative applications/services in recent years. The goal of this project is to resolve the problem of blindly flying an unmanned aerial vehicle (UAV, which a drone in our case) when it is out of human sight or the range of wireless communication, and three major research and development directions will be considered in this project. Three artificial intelligence (AI) technologies, namely, smart sensing, smart control, and smart simulation, are applied in this project. Smart sensing - a flight system is developed, which can avoid the obstacles, complete a flight mission, and land safely. Smart control - an intelligence flight control system and a light-weighted somatosensory vest are developed. Smart simulation - a cost-effective training system and a 3D model simplification method are designed.
-
-
-
HeaortaNet (Automatic Pericardium/Aorta Segmentation AI Model [HeaortaNet])
The Pericardium/Aorta Segmentation and Cardiovascular Risk Prediction AI Total Solution Model, HeaortaNet, is a deep learning model based on UNet and attention gate, and had been trained by >70,000 axial images with verified annotations of the pericardium and aorta. It shortens the time for data processing from 60 minutes, by manual segmentation of both pericardium and aorta, to 0.4 seconds. The segmentation accuracy is 94.8% for the pericardium, and 91.6% for the aorta. The applicability of HeaortaNet had been demonstrated by analyzing the non-contrast chest CT scans (>5,000 cases) deposited in the mega-image bank of National Health Insurance Databank.
-
-
-
Advanced Machine Tools Research Center
Tool wear and health condition monitoring during the processing: The tool wear monitoring technology developed by our researching team is specifically designed to analyze whether the tool is broken, collapsed, etc., and to estimate the remaining useful life(RUL) of the tool according to the working conditions of mass processing. By acquiring the vibration signal data with three-axis accelerometers installed on the machine tool, this technology could determine whether the current tool cutting vibration has exceeded the safety range by plotting a control chart. Once it exceeds the safe range, the current tool processing state will be assumed as abnormal. It gives users a reference to replace the broken tools immediately to prevent continuing processing, which causes vast loss such as poor quality of workpieces. In addition, this technology allows users to build models for distinct working conditions to predict the RUL of tools. It could allow users to evaluate the current health condition of tools and schedule the time to change the tool.
-
-
-
Drone Autopilot for Food Delivery
Drone delivery is a popular and emerging application at present. However, existing drone delivery systems can only deliver to outdoor open spaces via GPS, and cannot directly to the interior of recipient's building. In the era of covid-19 pandemic, we aim to reduce human contact and propose a drone delivery system that can deliver packages to the doorstep or the interior of buildings, and to achieve fully automatic control of the drone by developing visual positioning technique.
-
-
-
Chuan-Kang Ting《Technological Classification // AI & Ethics》
As artificial intelligence rapidly develops and enhances human’s quality of life, another cause for concern is the dangers and possible threats to humanity. “Moral judgement” will be a big issue that needs to be addressed as these intelligent machines become more and more prevalent in society. As with any new technologies, the topic of applied ethics often arises. So, the extension of that is AI ethics issues.
-
-
-
Chuan-Kang Ting《Technological Classification // AI & Ethics》
As artificial intelligence rapidly developsenhances human’s quality of life, another cause for concern is the dangerspossible threats to humanity. “Moral judgement” will be a big issue that needs to be addressed as these intelligent machines become moremore prevalent in society. As with any new technologies, the topic of applied ethics often arises. So, the extension of that is AI ethics issues.
-
-
-
O'Intelligent Inc.
AI-enabled Service Assurance Platform for 5G Vertical Application: The platform can help customers quickly import 5G vertical applications by providing overall customized solutions, including equipment evaluation, network deployment, application importing, network maintenance, and operation optimization. The platform can bridge the gap between the telecom industries and the vertical application industries and provide a total solution for the industries to import 5G vertical applications.
-
-
-
An integrated manufacturing platform, the law of sciencetechnology,industrial ecosystem - smart productionintelligent precision manufacturing with digital decision, AI modeling, big data governancekernel technologies
This project aims to develops a completely manufacturing flexible decision framework by applying big data analytics and AI techniques that integrates data from different decision-making units such as APC, APS, capacity planning, and inventory management planning to increase the decision quality and resilient capability in uncertain risks based on the perspective of factory operation.
-
-
-
Out of the Lab, a Scientist Dig out the Merit of AI.
Quote:br / “It is worth giving up some things because of dream pursuing” Professor SHOU-DE, LIN at the department of computer scienceInformation Engineering in National Taiwan University, Chief Machine Learning Scientist in Appier, said “An escape from comfort zone to seek new challenges makes my life become more colorful.”br / br / Content:br / br / Given qualified for being as the freshman of National Taiwan University College of Medicine, Professor Lin chose the department of electrical engineering in NTU as the first priority in Joint College Entrance Examination (JCEE). Though the undergraduate education did not cultivate him the passion on the field of electrical engineering, Professor Lin said, however, he was still recommended for further study at the graduate institute of electronics engineering in NTU due to his talentsoutstanding academic performance.
-
-
-
Artificial Intelligence-assisted Detection Tool for Pancreatic Cancer - PANCREASaver
PANCREASaver contains a “Pancreas Cancer (PC) automatic segmentation model” (image segmentation) and a “Pancreas Cancer (PC) analysis AI model” (image classification) that can read the DICOM format of postcontrast CT images directly for the automatic analysis process. After conducting prep-processing with image processing algorithms, C2FNAS is employed to illustrate the tumor position prior to the diagnosis conducted by CNN. The results can be provided to the physician for diagnostic reference so as to reduce early omissions and increase the detection rate of pancreatic cancer.
-
- 1