• View:
  • Items
radar networks Search Result 3
    • AI deep compression toolchain and Hybrid-fixed point CNN accelerator

      AI deep compression toolchain and Hybrid-fixed point CNN accelerator

      Assisted by in-house AI deep compression toolchain (ezLabel, ezModel, ezQUANT, ezHybrid-M), the proposed technology supports automatic AI model design and optimization with the integrated performance of 120x model size reduction and 70x power reduction in 2D CNN model, and develops a world-first 1/2/4/8-bit CNN model realized by the developed high efficiency Hybrid fixed point CNN NPU (Hybrid-NPU), which has been verified in Xilinx ZCU102 FPGA and achieves the performance up to 2.5 TOPS(8-b)/ 20TOPS(1-b)@28nm technology running at 550MHz and 4TOPS/W energy efficiency.
    • Computer Vision Research Center, National Yang-Ming Chiao-Tung university

      Computer Vision Research Center, National Yang-Ming Chiao-Tung university

      Development of AI Platform for Smart Drone - Intelligent Flight: Due to its high mobility and the ability to fly in the sky, the drone has inspired more and more innovative applications/services in recent years. The goal of this project is to resolve the problem of blindly flying an unmanned aerial vehicle (UAV, which a drone in our case) when it is out of human sight or the range of wireless communication, and three major research and development directions will be considered in this project. Three artificial intelligence (AI) technologies, namely, smart sensing, smart control, and smart simulation, are applied in this project. Smart sensing - a flight system is developed, which can avoid the obstacles, complete a flight mission, and land safely. Smart control - an intelligence flight control system and a light-weighted somatosensory vest are developed. Smart simulation - a cost-effective training system and a 3D model simplification method are designed.
  • 1
本網站使用您的Cookie於優化網站及您的購物經驗。繼續瀏覽網站即表示您同意本公司隱私權政策,您可至隱私權政策了解詳細資訊。