Advanced search

  • View:
  • Items
    • Highly Efficient Quantum Key Distribution System

      Highly Efficient Quantum Key Distribution System

      div style="text-align: justify"Quantum key distribution exploits the transmissiondetection of single photons’ quantum states to generatedistribute secure keys, allowing absolutely secure communication. We use a self-developed miniature single-photon source, together with the single-photon wavepacket engineering, to implement a highly efficient protocol of differential-phase-shift quantum key distribution. Using the Campus Fiber Network between National Tsing Hua UniversityNational Chiao Tung University, we demonstrate Taiwan’s first outdoor quantum key distribution. The technology not only benefits the development of distance unlimited absolutely secure communication networks for the commercialmilitary uses, but also opens up new opportunities for the R&Dmarkets in industry./div
    • New insight into the brain: Optical imaging/stimulationspiking neural circuit models

      New insight into the brain: Optical imaging/stimulationspiking neural circuit models

      div style="text-align: justify"Constructing a functional connectomeits computational model is a crucial step toward understanding the mechanisms of brain functions. To achieve this goal, we developed two correlated technologies: (1) An all- optical physiology (AOP) that is capable of millisecond volumetric imagingaccurate stimulation in living animal brains. This system allows us to establish functional connectomeneural coding with a single-cell resolution. (2) A cellular-level spiking neural circuit simulation system that is capable of tuning itself based on the input data from the AOP system. We have demonstrated our technologies in the Drosophila late visual systemwill apply them in the brains of larger species such as mice. We expect that our technologies will be able to greatly enhance our knowledge of the brain operation principles. Our 3D all-optical physiology (AOP) platform incorporates single-photon point stimulationtwo-photon high-speed volumetric recordings (Optics Letters 2019, "Editors pick"). We have demonstrated its effectiveness in studying the anterior visual pathway of fruit flies (iScience2019). In comparison, contemporary high-speed AOP platforms are limited to single-depthdiscrete multi-plane recordings that are not suitable for studying functional connections. Our high-resolution computational model is constructed based on the combination of static connectomeAOP data,is much more realistic than the existing models. Our work aids establishing in-vivo 3D functional connectomescomputational models of the brains, thus provides insight into the mechanisms of brain functions./div
    •  AIoT Aquaculture Technology Co., Ltd.

      AIoT Aquaculture Technology Co., Ltd.

      Artificial Intelligence Techniques Aquaculture Management System: The system uses the omni-IoT system to collect big data, provides AI algorithm for each module, included AI ​​feeding module, fish body length weight measurement module, smart submersible cage module, and provides better fish growth control , to reduce residual bait, to improve survival rate of fish, to save manpower, to reduce the threshold, cost and risk of smart cage culture operation. The AIoT system of our team is mainly self-made, which greatly saves costs and is modularized. Aquaculturist can choose modules to use allow young fishermen to profit easily even if they do not have a lot of farming experience.
  • 1